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We study trade-offs presented by local search algorithms in complex networks which are heterogeneous in
edge weights and node degree. We show that search based on a network measure, local betweenness centrality
�LBC�, utilizes the heterogeneity of both node degrees and edge weights to perform the best in scale-free
weighted networks. The search based on LBC is universal and performs well in a large class of complex
networks.
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I. INTRODUCTION

Many large-scale distributed systems found in communi-
cations, biology or sociology can be represented by complex
networks. The macroscopic properties of these networks
have been studied intensively by the scientific community,
which has led to many significant results �1–3�. Graph prop-
erties such as the degree distribution and clustering coeffi-
cient were found to be significantly different from random
graphs �4,5� which are traditionally used to model these net-
works. One of the major findings is the presence of hetero-
geneity in various properties of the elements in the network.
For instance, a large number of the real-world networks in-
cluding the World Wide Web, the Internet, metabolic net-
works, phone call graphs, and movie actor collaboration net-
works are found to be highly heterogeneous in node degree
�i.e., the number of edges per node� �1–3�. The clustering
coefficients, quantifying local order and cohesiveness �6�,
were also found to be heterogeneous, i.e., C�k��k−1 �7�.
These discoveries along with others related to the mixing
patterns of complex networks initiated a revival of network
modeling in the past few years �1–3�. Focus has been on
understanding the mechanisms which lead to heterogeneity
in node degree and implications of it on the network proper-
ties. It was also shown that this heterogeneity has a huge
impact on the network properties and processes such as net-
work resilience �8�, network navigation, local search �9�, and
epidemiological processes �10�.

Recently, there have been many studies �11–17� that tried
to analyze and characterize weighted complex networks
where edges are characterized by capacities or strengths in-
stead of a binary state �present or absent�. These studies have
shown that heterogeneity is prevalent in the capacity and
strength of the interconnections in the network as well. Many
researchers �11,13–16� have pointed out that the diversity of
the interaction strengths is critical in most real-world net-
works. For instance, sociologists have shown that the weak
links that people have outside their close circle of friends
play a key role in keeping the social system together �11�.
The Internet traffic �16� or the number of passengers in the
airline network �15� are critical dynamical quantities that can
be represented by using weighted edges. Similarly, the diver-
sity of the predator-prey interactions and of metabolic reac-

tions is considered as a crucial component of ecosystems
�13� and metabolic networks, respectively �14�. Thus it is
incomplete to represent real-world systems with equal inter-
action strengths between different pairs of nodes.

In this paper, we concentrate on finding efficient decen-
tralized search strategies on networks which have heteroge-
neity in edge weights. This is an intriguing and relatively
little studied problem that has many practical applications.
Suppose some required information such as computer files or
sensor data is stored at the nodes of a distributed network.
Then to quickly determine the location of particular informa-
tion, one should have efficient decentralized search strate-
gies. This problem has become more important and relevant
due to the advances in technology that led to many distrib-
uted systems such as sensor networks �18�, peer-to-peer net-
works �19� and dynamic supply chains �20�. Previous re-
search on local search algorithms �9,21–24� has assumed that
all the edges in the network are equivalent. In this paper we
study the complex tradeoffs presented by efficient local
search in weighted complex networks. We simulate and ana-
lyze different search strategies on Erdős-Rényi �ER� random
graphs and scale-free networks. We define a new local pa-
rameter called local betweenness centrality �LBC� and pro-
pose a search strategy based on this parameter. We show that
irrespective of the edge weight distribution this search strat-
egy performs the best in networks with a power-law degree
distribution �i.e., scale-free networks�. Finally, we show that
the search strategy based on LBC is usually equivalent with
high-degree search �discussed by Adamic et al. �9�� in un-
weighted �binary� networks. This implies that the search
based on LBC is more universal and is optimal in a larger
class of complex networks.

The rest of the paper is organized as follows. In Sec. II,
we describe the problem in detail and briefly discuss the
literature related to search in complex networks. In Sec. III,
we define the local betweenness centrality �LBC� of a node’s
neighbor and show that it depends on the weight of the edge
connecting the node and neighbor and on the degree of the
neighbor. Section IV explains our methodology and different
search strategies considered. Section V gives the details of
the simulations conducted for comparing these strategies. In
Sec. VI, we discuss the findings from simulations on ER
random and scale-free networks. In Sec. VII, we prove that
the LBC and degree-based search are equivalent in un-
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weighted networks. Finally, we give conclusions in Sec.
VIII.

II. PROBLEM DESCRIPTION AND LITERATURE

The problem of decentralized search goes back to the fa-
mous experiment by Milgram �25� illustrating the short dis-
tances in social networks. One of the striking observations of
this study as pointed out by Kleinberg �21� was the ability of
the nodes in the network to find short paths by using only
local information. Currently, Watts et al. �26� are doing an
Internet-based study to verify this phenomenon. Kleinberg
demonstrated that the emergence of such phenomenon re-
quires special topological features �21�. Considering a family
of network models that generalizes the Watts-Strogatz model
�6�, he showed that only one particular model among this
infinite family can support efficient decentralized algorithms.
Unfortunately, the model given by Kleinberg is too con-
strained and represents only a very small subset of complex
networks. Watts et al. presented another model to explain the
phenomena observed by Milgram which is based upon plau-
sible hierarchical social structures �22�. However, in many
real-world networks, it may not be possible to divide the
nodes into sets of groups in a hierarchy depending on the
properties of the nodes as in the Watts et al. model.

Recently, Adamic et al. �9� showed that in networks with
a power-law degree distribution �scale-free networks� high
degree seeking search is more efficient than random walk
search. In random walk search, the node that has the message
passes it to a randomly chosen neighbor. This process con-
tinues until it reaches the target node. In high degree search,
the node passes the message to the neighbor that has the
highest degree among all nodes in the neighborhood, assum-
ing that a more connected neighbor has a higher probability
of reaching the target node. The high degree search was
found to outperform the random walk search consistently in
networks having power-law degree distribution for different
exponents varying from 2.0 to 3.0. Using generating function
formalism given by Newman �27�, Adamic et al. showed that
for random walk search the number of steps s until approxi-
mately the whole graph is revealed is given by s�N3�1−2/��,
where � is the power-law exponent, while high degree search
leads to a much more favorable scaling s�N2−4/�.

The assumption of equal edge weights �meaning the cost,
bandwidth, distance, or power consumption associated with
the process described by the edge� usually does not hold in
real-world networks. As pointed out by many researchers
�11–17�, it is incomplete to assume that all the links are
equivalent while studying the dynamics of large-scale net-
works. The total path length �p� in a weighted network for
the path 1-2-3¯-n, is given by p=�i=1

n wi,i+1, where wi,i+1 is
the weight on the edge from node i to node i+1. Even
though high-degree search results in a path with smaller
number of hops, the total path length may be high if the
weights on these edges are high. Thus, to be more realistic
and closer to real-world networks we need to explicitly in-
corporate weights in any proposed search algorithm. In this
paper, we are interested in designing decentralized search
strategies for networks that have the following properties:

�1� Its node degree distribution follows a power law with
exponent varying from 2.0 to 3.0. Although we discuss the
search strategies for networks with Poisson degree distribu-
tion �ER random graphs�, we concentrate more on scale free
networks since most of the real world networks are found to
exhibit this behavior �1–3�.

�2� It has nonuniformly distributed weights on the edges.
Here the weights signify the cost or time taken to pass the
message or query. Hence, smaller weights correspond to
shorter and/or better paths. We consider different distribu-
tions such as Beta, uniform, exponential, and power law.

�3� It is unstructured and decentralized. That is, each
node has information only about its first and second neigh-
bors and no global information about the target is available.
Also, the nodes can communicate only with their immediate
neighbors.

�4� Its topology is dynamic �ad hoc� while still maintain-
ing its statistical properties. These particular types of net-
works are becoming more prevalent due to advances made in
different areas of engineering especially in sensor networks
�18�, peer-to-peer networks �19� and dynamic supply chains
�20�. Here, in this paper we analyze the problem of finding
decentralized algorithms in such weighted complex net-
works, which we believe has not been explored to date.

Among the search strategies employed in this paper is a
strategy based on the local betweenness centrality �LBC� of
nodes. Betweenness centrality �also called load�, first devel-
oped in the context of social networks �28�, has been recently
adapted to optimal transport in weighted complex networks
by Goh et al. �17�. These authors have shown that in the
strong disorder limit �that is, when the total path length is
dominated by the maximum edge weight over the path�, the
load distribution follows a power law for both ER random
graphs and scale-free networks. To determine a node’s be-
tweenness as defined by Goh et al. one would need to have
the knowledge of the entire network. Here we define a local
parameter called local betweenness centrality �LBC� which
only uses information on the first and second neighbors of a
node, and we develop a search strategy based on this local
parameter.

III. LOCAL BETWEENNESS CENTRALITY

We assume that each node in the network has information
about its first and second neighbors. For calculating the local
betweenness centrality of the neighbors of a given node we
consider the local network formed by that node �which we
will call the root node�, its first and second neighbors. Then,
the betweenness centrality, defined as the fraction of shortest
paths going through a node �3�, is calculated for the first
neighbors in this local network. Let L�i� be the LBC of a
neighbor node i in the local network. Then L�i� is given by

L�i� = �
s�i�t

s,t�local network

�st�i�
�st

where �st is the total number of shortest paths �where short-
est path means the path over which the sum of weights is
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minimal� from node s to t. �st�i� is the number of these
shortest paths passing through i. If the LBC of a node is
high, it implies that this node is critical in the local network.
Intuitively, we can see that the LBC of a neighbor depends
on both its degree and the weight of the edge connecting it to
the root node. For example, let us consider the networks in
Figs. 1�a� and 1�b�. Suppose that these are the local networks
of node 1. In the network in Fig. 1�a�, node 2 has the highest
degree among the neighbors of node 1 �i.e., nodes 2, 3, 4,
and 5�. All the shortest paths from the neighbors of node 2
�6, 7, 8, and 9� to other nodes must pass through node 2.
Hence, we see that higher degree for a node definitely helps
in obtaining a higher LBC.

Now consider a similar local network but with a higher
weight on the edge from 2 to 1 as shown in Fig. 1�b�. In this
network all the shortest paths through node 2 will also pass
through node 3 �2-3-1� instead of going directly from node 2
to node 1. Hence, the LBC of the neighbor node 3 will be
higher than that of neighbor 2. Thus we clearly see that the
LBCs of the neighbors of node 1 depend on both the neigh-
bors’ degrees and the weights on the edges connecting them.
Note that a neighbor having the highest degree or the small-
est weight on the edge connecting it to root node does not
necessarily imply that it will have the highest LBC.

IV. METHODOLOGY

In unweighted scale-free networks, Adamic et al. �9� have
shown that high degree search which utilizes the heterogene-
ity in node degree is efficient. Thus one expects that in
weighted power-law networks, an efficient search strategy
should consider both the edge weights and node degree. We
investigated the following set of search strategies given in
the order of the amount of information required.

�1� Choose a neighbor randomly: The node tries to reach
the target by passing the message/query to a randomly se-
lected neighbor.

�2� Choose the neighbor with smallest edge weight: The
node passes the message along the edge with minimum
weight. The idea behind this strategy is that by choosing a
neighbor with minimum edge weight the expected distance
traveled would be less.

�3� Choose the best-connected neighbor: The node passes
the message to the neighbor which has the highest degree.
The idea here is that by choosing a neighbor which is well-
connected, there is a higher probability of reaching the target
node. Note that this strategy takes the least number of hops
to reach the target �9�.

�4� Choose the neighbor with the smallest average
weight: The node passes the message to the neighbor which
has the smallest average weight. The average weight of a
node is the average weight of all the edges incident on that
node. The idea here is similar to the second strategy. Instead
of passing the message greedily along the least weighted
edge, the algorithm passes to the node that has the minimum
average weight.

�5� Choose the neighbor with the highest LBC: The node
passes the message to the neighbor which has the highest
LBC. A neighbor with highest LBC would imply that many
shortest paths in the local network pass through this neighbor
and the node is critical in the local network. Thus, by passing
the message to this neighbor, the probability of reaching the
target node quicker is higher.

Note that the strategy which depends on LBC utilizes
slightly move information than strategy 4, namely the edge
weights between second neighbors, but it is considerably
more informative, it reflects the heterogeneities in both edge
weights and node degree. Thus we expect that this search
will perform better than the others, that is, it will give
smaller path lengths than the others.

V. SIMULATIONS

For comparing the search strategies we used simulations
on random networks with Poisson and power-law degree dis-
tributions. For homogeneous networks we used the Poisson
random network model given by Erdős and Rényi �4�. We
considered a network on N nodes where two nodes are con-
nected with a connection probability p. For scale-free net-
works, we considered different values of degree exponent �
ranging from 2.0 to 3.0 and a degree range of 2�k�m
�N1/� and generated the network using the method given by
Newman �27�. Once the network was generated, we ex-
tracted the largest connected component, shown to always
exist for 2���3.48 �29� and in ER networks for p�1/N
�5�. We did our analysis on this largest connected component
that contains the majority of the nodes after verifying that the
degree distribution of this largest connected component is
nearly the same as in the original graph. The weights on the
edges were generated from different distributions such as
Beta, uniform, exponential and power law. We considered
these distributions in the increasing order of their variances
to understand how the heterogeneity in edge weights affects
different search strategies.

Further, we randomly choose K pairs �source and target�
of nodes. The source, and consecutively each node receiving

FIG. 1. �a� In this configuration, neighbor node 2 has a higher
LBC than other neighbors 3, 4, and 5. This depicts why higher
degree for a node helps in obtaining higher LBC. �b� However, in
this configuration the LBC of the neighbor node 3 is higher than
neighbors 2, 4, and 5. This is due to the fact that the edge connect-
ing 1 and 2 has a larger weight. These two configurations show that
the LBC of a neighbor depends both on the edge weight and the
node degree. In both cases, edge weights other than those shown in
the figure are assumed to be 1.
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the message, sends the message to one of its neighbors de-
pending on the search strategy. The search continues until the
message reaches the node whose neighbor is the target node.
In order to avoid passing the message to a neighbor that has
already received it, a list li of all the neighbors that received
the message is maintained at each node i. During the search
process, if node i passes the message to its neighbor j, which
does not have any more neighbors that are not in the list lj,
then the message is routed back to the node i. This particular
neighbor j is marked to note that this node cannot pass the
message any further. The average path distance was calcu-
lated for each search strategy from the paths obtained for
these K pairs. We repeated this simulation for 10 to 50 in-
stances of the Poisson and power-law networks depending on
the size of the network.

VI. ANALYSIS

First, we study and compare different search strategies on
ER random graphs. The weights on the edges were generated
from an exponential distribution with mean 5 and variance
25. Table I compares the performance of each strategy for the
networks of size 500, 1000, 1500, and 2000 nodes. We took
the connection probability to be p=0.004 and hence a giant
connected component always exists �5�. From Table I, it is
evident that the strategy which passes the message to the
neighbor with the least edge weight is better than all the
other strategies in homogeneous networks. Remarkably, a
search strategy that needs less information than other strate-

gies �3, 4, and 5�, performed best, while high degree search
and LBC did not perform well since the network is highly
homogenous in node degree.

However, if we decrease the heterogeneity in edge
weights �use a distribution with lesser variance�, we observe
that high LBC search performs best �see Table II�. In con-
clusion, when the heterogeneity of edge weights is high com-
pared to the relative homogeneity of node degrees, the search
strategies which are purely based on edge weights would
perform better. However, as the heterogeneity of the edge
weights decrease the importance of edge weights decreases
and strategies which consider both edge weights and node
degree perform better.

Next we investigated how the search strategies perform
on scale-free networks. Figure 2 shows the scaling of differ-
ent search strategies for scale-free networks with exponent
2.1. As conjectured, the search strategy that utilizes the het-
erogeneities of both the edge weights and nodes’ degrees �the
high LBC search� performed better than the other strategies.
A similar phenomenon was observed for different exponents
of the scale-free network �see Table III�. Except for the
power-law exponent 2.9, the high LBC search was consis-
tently better than others. We observe that as the heterogene-
ity in the node degree decreases �i.e., as power-law exponent
increases�, the difference between the high LBC search and
other strategies decreases. When the exponent is 2.9, the per-
formance of LBC, minimum edge weight and high degree
searches were almost the same. Note that when the network
becomes homogeneous in node degree the minimum edge
weight search performs better than high LBC search �Table

TABLE I. Comparison of search strategies in a Poisson random network. The edge weights were gener-
ated randomly from an exponential distribution with mean 5 and variance 25. The values in the table are the
average path distances obtained for each search strategy in these networks. The strategy which passes the
message to the neighbor with the least edge weight performs the best.

Search strategy 500 nodes 1000 nodes 1500 nodes 2000 nodes

Random walk 1256.3 2507.4 3814.9 5069.5

Minimum edge weight 597.6 1155.7 1815.5 2411.2

Highest degree 979.7 1923.0 2989.2 3996.2

Minimum average node weight 832.1 1652.7 2540.5 3368.6

Highest LBC 864.7 1800.7 2825.3 3820.9

TABLE II. Comparison of search strategies in a Poisson random network with 2000 nodes. The table
gives results for different edge weight distributions. The mean for all the distributions is 5 and variance is �2.
The values in the table are the average path lengths obtained for each search strategy in these networks. When
the weight heterogeneity is high, the minimum edge weight search strategy was the best. However, when the
heterogeneity of edge weights is low, then LBC performs better.

Search strategy
Beta

�2=2.3
Uniform
�2=8.3

Exp.
�2=25

Power law
�2=4653.8

Random walk 1271.91 1284.9 1253.68 1479.32

Minimum edge weight 1017.74 767.405 577.83 562.39

Highest degree 994.64 1014.05 961.5 1182.18

Minimum average node weight 1124.48 954.295 826.325 732.93

Highest LBC 980.65 968.775 900.365 908.48
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I�. This implies that similarly to high degree search �9�, the
effectiveness of high LBC search also depends on the het-
erogeneity in node degree.

Table IV shows the performance of all the strategies on a
scale-free network �exponent 2.1� with different edge weight
distributions. The percentage values in the brackets show by
how much the average distance for that search is higher than
the average distance obtained by the high LBC search. As in
random graphs, we observe that the impact of edge weights
on search strategies increases as the heterogeneity of the
edge weights increase. For instance, when the variance �het-
erogeneity� of edge weights is small, high degree search is
better than the minimum edge weight search. On the other
hand, when the variance �heterogeneity� of edge weights is
high, the minimum edge weight strategy is better than high
degree search. In each case, the high LBC search which re-
flects both edge weights and node degree always out-
performed the other strategies. Thus, it is clear that in power-
law networks, irrespective of the edge weight distribution
and the power-law exponent, high LBC search always per-
forms better than the other strategies �Tables III and IV�.

Figure 3 gives a pictorial comparison of the behavior of

high degree and high LBC search as the heterogeneity of the
edge weights increase �based on the results shown in Table
IV�. Since many studies �11–17� have shown that there is a
large heterogeneity in the capacity and strengths of the inter-
connections in the real networks, it is important that local
search is based on LBC rather than high degree as shown by
Adamic et al. �9�.

Note that LBC has been adopted from the definition of
betweenness centrality �BC� which requires the global
knowledge of the network. BC is defined as the fraction of
shortest paths among all nodes in the network that pass
through a given node and measures how critical the node is
for optimal transport in complex networks. In unweighted
scale-free networks there exists a scaling relation between
node betweenness centrality and degree, BC�k� �30�. This
implies that the higher the degree, the higher is the BC of the
node. This may be the reason why high degree search is
optimal in unweighted scale-free networks �as shown by
Adamic et al. �9��. However, Goh et al. �17� have shown that
no scaling relation exists between node degree and between-
ness centrality in weighted complex networks. It will be in-
teresting to see the relationship between local and global
betweenness centrality in our future work. Also, note that the
minimum average node weight strategy �strategy 4� uses
only slightly less information than LBC search. However,
LBC search consistently and significantly outperforms it �see

TABLE III. Comparison of search strategies in power-law network on 2000 nodes with different power-
law exponents. The edge weights are generated from an exponential distribution with mean 5 and variance
25. The values in the table are the average path lengths obtained for each search strategy in these networks.
LBC search, which reflects both the heterogeneities in edge weights and node degree, performed the best for
all power-law exponents. The systematic increase in all path lengths with the increase of the power-law
exponent � is due to the fact that the average degree of the network decreases with �.

Power-law exponent=

Search strategy 2.1 2.3 2.5 2.7 2.9

Random walk 1108.70 1760.58 2713.11 3894.91 4769.75

Minimum edge weight 318.95 745.41 1539.23 2732.01 3789.56

Highest degree 375.83 761.45 1519.74 2693.62 3739.61

Minimum average node weight 605.41 1065.34 1870.43 3042.27 3936.03

Highest LBC 298.06 707.25 1490.48 2667.74 3751.53

FIG. 2. Scaling for search strategies in power-law networks with
exponent 2.1. The edge weights are generated from an exponential
distribution with mean 10 and variance 100. The symbols represent
random walk ��� and search algorithms based on minimum edge
weight ���, high degree ���, minimum average node weight ���,
and high LBC ���.

FIG. 3. The pictorial comparison of the behavior of high degree
and high LBC search as the heterogeneity of edge weights increases
in power-law networks. Note that average distances are normalized
with respect to high LBC search.
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Tables I–IV�. This implies that LBC search uses the informa-
tion correctly.

VII. LBC ON UNWEIGHTED NETWORKS

In this section, we show that the neighbor with the highest
LBC is usually the same as the neighbor with the highest
degree in unweighted networks. Hence, high LBC search
would give identical results as high degree search in un-
weighted networks. As mentioned earlier, in unweighted
scale-free networks, there is a scaling relation between the
�global� BC of a node and its degree, as BC�k� �30�. How-
ever, this does not imply that in an unweighted local network
the neighbor with highest LBC is always the same as the
neighbor with the highest degree. Here, we show that in most
cases the highest degree and the highest LBC neighbors co-
incide. First, let us consider a tree-like local network without
any loops similar to the network configuration shown in Fig.
4�a�. In a local network, there are three types of nodes,
namely, root node, first neighbors and second neighbors. Let
the degree of the root node be d and the degree of the neigh-
bors be k1 ,k2 ,k3 , . . . ,kd. The number of nodes �n� in the
local network is n=1+� j=1

d kj �one root node, d first neigh-
bors and � j=1

d �kj −1� second neighbors�. In a tree network
there is a single shortest path between any pair of nodes s
and t, thus �st�i� is either zero or one. Then the LBC of a first
neighbor i is given by L�i�= �ki−1��n−2�+ �ki−1��n−ki�
where ki is the degree of the neighbor. The first term is due to
the shortest paths from ki−1 neighbors of node i to n−2
remaining nodes �other than node i and the neighbor j� in the
network. The second term is due to the shortest paths from
n−ki nodes �other than ki−1 neighbors and node i� to ki−1
neighbors of node i. Note that we choose not to explicitly
take into account the symmetry of distance in undirected
networks and count the s-t and t-s paths separately. L�i� is an
increasing function if ki�n− 1

2 , a condition that is always
satisfied since n=1+� j=1

d kj. This implies that in a local net-
work with treelike structure, the neighbor with highest de-

gree has the highest LBC. We extend the above result for
other configurations of the local network by considering dif-
ferent possible cases.

The possible edges other than the edges present in a tree-
like local network are an edge between two first neighbors,
an edge between a first neighbor and a second neighbor and
an edge between two second neighbors. As shown in Fig.
4�b�, an edge among two first neighbors changes the LBC of
the root node but not that of the neighbors. Figure 4�c� shows
a configuration of a local network with an edge added be-
tween a first and a second neighbor. Now, there is a small
change in the LBCs of the neighbors �nodes 2 and 3� which
are connected to a common second neighbor �node 9�. Since

TABLE IV. Comparison of search strategies in power-law networks with exponent 2.1 and 2000 nodes
with different edge weight distributions. The mean for all the edge weight distributions is 5 and the variance
is �2. The values in the table are the average distances obtained for each search strategy in these networks.
The values in the brackets show the relative difference between average distance for each strategy with
respect to the average distance obtained by the LBC strategy. LBC search, which reflects both the heteroge-
neities in edge weights and node degree, performed the best for all edge weight distributions.

Search strategy
Beta

�2=2.3
Uniform
�2=8.3

Exp.
�2=25

Power law
�2=4653.8

Random walk 1107.71
�202%�

1097.72
�241%�

1108.70
�272%�

1011.21
�344%�

Minimum edge weight 704.47
�92%�

414.71
�29%�

318.95
�7%�

358.54
�44%�

Highest degree 379.98
�4%�

368.43
�14%�

375.83
�26%�

394.99
�59%�

Minimum average node weight 1228.68
�235%�

788.15
�145%�

605.41
�103%�

466.18
�88%�

Highest LBC 366.26 322.30 298.06 247.77

FIG. 4. �a� A configuration of a local network with a tree like
structure. In such local networks, the neighbor with the highest
degree has the highest LBC. �b� A local network with an edge
between two first neighbors. Here again the neighbor with the high-
est degree has the highest LBC. �c� A local network with an edge
between a first neighbor and a second neighbor. Although there is
change in LBCs of neighbors, the order remains the same.
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node 9 is now shared by neighbors 2 and 3, the LBC con-
tributed by node 9 is divided between these two neighbors.
The LBC of such a neighbor i is L�i�= �ki−2��n−2�+ �ki

−2��n−ki�+ �n−kj −1� where ki is the degree of the neighbor
i and kj is the degree of the neighbor with which node i has
a common second neighbor. The decrease in the LBC of
neighbor i is �n−ki+kj −1�. If there are two neighbors with
the same degree �one with a common second neighbor and
another without any� then the neighbor without any common
second neighbors will have higher LBC. Another possible
change of order with respect to LBC would be with a neigh-
bor l of degree kl=ki−1 �if it exists�. However, L�i�−L�l�
= �n−ki−kj +1� is always greater than 0, since n=� j=1

d kj in
this local network. Thus the only scenario under which the
order of neighbors with respect to LBC is different than their
order with respect to degree when adding an edge between
first and second neighbors is if that creates two first neigh-
bors with the same degree. A similar argument leads to an
identical conclusion in the case of adding an edge between
two second neighbors as well.

The above discussion suggests that the highest degree
neighbor is always the same as the highest LBC neighbor.
This is not true in few peculiar instances of local networks.
For example, consider the network shown in Fig. 5 which
has several edges between the first and second neighbors. We

see that the highest degree neighbor is not the same as the
highest LBC neighbor. In this local network, the highest de-
gree first neighbor �node 2�, participates in several four-node
circuits that include the root node. Thus, there are multiple
shortest paths starting from second-neighbor nodes on these
cycles �nodes 6, 7, 9, 10� and the contributions to node 2’s
LBC from the paths that pass through it are smaller than
unity, consequently the LBC of node 2 will be relatively
small. This may be one of the reasons why the highest-
degree neighbor node 2 is not the highest LBC neighbor. We
feel that this happens only in some special instances of local
networks. From about 50 000 simulations we found that in
99.63% of cases the highest degree neighbor is the same as
the highest LBC neighbor. Hence, we can conclude that in
unweighted networks the neighbor with highest LBC is usu-
ally identical to the neighbor with the highest degree.

VIII. CONCLUSION

In this paper we have given a new direction for local
search in complex networks with heterogeneous edge
weights. We proposed a local search algorithm based on a
new local measure called local betweenness centrality. We
studied complex tradeoffs presented by efficient local search
in weighted complex networks and showed that heterogene-
ity in edge weights has huge impact on search. Moreover, the
impact of edge weights on search strategies increases as the
heterogeneity of the edge weights increase. We also demon-
strated that the search strategy based on LBC utilizes the
heterogeneity in both the node degree and edge weight to
perform the best in power-law weighted networks. Further-
more, we have shown that in unweighted power-law net-
works the neighbor with the highest degree is usually the
same as the neighbor with the highest LBC. Hence, our pro-
posed search strategy based on LBC is more universal and is
efficient in a larger class of complex networks.
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